Квантовые компьютеры и конец безопасности

В целях кибербезопасности

По мнению российских экспертов, квантовые компьютеры будут представлять угрозу не столько для технологии блокчейн, сколько для криптоалгоритмов, которые лежат в её основе. Такие же алгоритмы используются, в частности, в банковской сфере. Поэтому появление квантовых компьютеров, которые могут взломать подобные алгоритмы, приведёт к гораздо более масштабным и серьёзным последствиям, чем взлом сети Bitcoin.

«Специалисты уже задумались над внедрением в блокчейн криптостойких алгоритмов, которые выдерживают атаки с квантовых компьютеров. Думаю, квантовый компьютер появится не ранее чем через несколько лет. За это время удастся внедрить криптостойкие алгоритмы, которые обеспечат защиту данных», — сообщил в беседе с RT блокчейн-консультант Денис Смирнов.

Также по теме


Лучшие друзья интернета: как алмазы помогут создать квантовую сеть будущего

Американские учёные из Принстонского университета приблизились к созданию скоростного квантового интернета. Специалисты заменили в…

По мнению эксперта, необходимо следить за развитием квантовых технологий и внедрить алгоритмы, устойчивые к квантовым атакам, раньше, чем появятся мощные компьютеры.

«Разумнее всего внимательно изучить следующее поколение протоколов шифрования. Думаю, что сейчас такая практика должна стать базовой частью деятельности каждой организации в области кибербезопасности», — сообщил в интервью изданию Gizmodo вице-президент IBM Research Роберт Сутор.

Ранее специалисты уже предложили такие методы защиты данных, как использование постквантовой криптографии, устойчивой ко взлому квантовым компьютером.

«Лучше всего начать готовиться к квантовым атакам заранее. Если меч — дело будущего, то щит уже существует», — заключил Львовский.

2019

«Росатом» разработал дорожную карту развития квантовых вычислений в России

16 декабря 2019 года стало известно о новой дорожной карте, которую разработал «Росатом» в качестве плана развития квантовых вычислений в России. Госкорпорация предлагает концепцию одновременного создания оборудования и программного обеспечения.

По планам «Росатома», на развитие квантовых технологий в России потребуется около 23,7 млрд рублей до 2024 года. Примерно половина этой суммы пойдет на работу над капиталоемкими сверхпроводящими квантовыми компьютерами, а на разработку софтверных решений потребуется около 2 млрд рублей, рассказали «Коммерсанту» в Российском квантовом центре (РКЦ).

Стало известно о новой дорожной карте, которую разработал «Росатом» в качестве плана развития квантовых вычислений в России

Многие компании заинтересованы. Мы планируем параллельно работать над созданием софта для квантового компьютера, чтобы, когда его мощность достигнет достаточного размера, софт к нему был уже готов, — сообщил изданию гендиректор РКЦ Руслан Юнусов.

По его словам, в рамках проекта планируется создание софта под запросы бизнеса. К середине декабря 2019 года ведутся переговоры с 25 компаниями, среди которых — Сбербанк и «Сбербанк-Технологии», Газпромбанк, «Сибур» и «Газпромнефть», рассказал он.

Член экспертного совета по российскому программному обеспечению Илья Массух указывает на то, что заложенные во всем проекте дорожной карты средства меньше расходов крупных зарубежных компаний на квантовые вычисления поодиночке. При этом он поддержал концепцию одновременно развития программных и аппаратных технологий и добавил, что, Россия не отстает в сфере квантовых разработок.

Исполнительный директор Ассоциации предприятий компьютерных и информационных технологий Николай Комлев говорит, что компании пока не готовы использованию квантовых вычислений. Реального спроса еще нет, нужны не уникальные экспериментальные установки, а законченные изделия с понятным прикладным ПО и реальными примерами использования, уверен он.

Разработка квантового компьютера «Росатомом» за 24 млрд рублей

В начале ноября 2019 года стало известно о начале разработки «Росатомом» квантового компьютера. Его создание обойдется в 24 млрд рублей, из которых 13,3 млрд рублей — бюджетные средства, рассказала «Ведомостям» директора по цифровизации госкорпорации Екатерина Солнцева. 

По её словам, во внебюджетные средства войдут деньги «Росатома», однако планируется привлекать к участию и другие компании.

«Росатом» объявил о разработке квантового компьютера за 24 млрд рублей

Первые четыре прототипа компьютера в «Росатоме» планируют разработать уже к 2024 году — их размер составит от 50 до 100 кубитов. Пока российским специалистам удавалось создать системы, состоящие лишь из двух кубитов, в то время как американские и европейские ученые уже разработали устройства, построенные на 50–70 кубитах.

Проектный офис возглавил гендиректор Российского квантового центра (РКЦ) Руслан Юнусов, руководивший разработкой дорожной карты по квантовым технологиям в рамках федеральной программы «Цифровая экономика».

По словам Юнусова, процессоры для квантовых компьютеров будут производить в России, другие комплектующие, например, лазеры или измерительная техника, могут покупаться за границей. Кроме того, к отечественному устройству, которое будет базироваться в России, собираются разработать облачную платформу с удаленным доступом.

По словам генерального директора «Росатома» Алексея Лихачева, собственные квантовые вычислители должны стать залогом технологической конкурентоспособности России, в том числе и в атомной отрасли.

Разработка поможет России попасть в число стран – лидеров квантовой гонки, говорится в сообщении «Росатома». Между правительством России и «Росатомом» есть соглашение о развитии в стране квантовых вычислений. 

Квантовые компьютеры способны решать задачи, недоступные даже самым мощным суперкомпьютерам, пишут «Ведомости»: например, моделирование поведения сложных молекул (нужно для разработки новых лекарств и материалов), разветвлённые логистические задачи, работа с большими данными и так далее.

Зачем нужны квантовые компьютеры

Моделирование сложных физических систем

Первым о создании квантового компьютера в 80-х годах прошлого столетия заговорил Ричард Фейнман, американский учёный и физик, один из создателей квантовой электродинамики. В основу его запроса легла мысль о том, что подобное оценивается подобному. Уже тогда учёные и исследователи со всего мира нуждались не просто в теоретических расчётах квантовых систем, но и в точном имитировании их поведения.

Обычный пользовательский компьютер даже сегодня не способен справиться с этой задачей, потому что, как мы уже выяснили, квантовая микрочастица может принимать одномоментно два значения (0 и 1), тогда как система из двух частиц уже способна принимать 4 значения (00, 01, 10, 11) и так далее.

Таким образом, для создания квантовой системы, состоящей, например, из десяти электронов, необходимо задействовать 1024 процессора, работающих одновременно. При этом нельзя забывать о том, что смена состояния одного электрона моментально отразится на состоянии остальных (то есть вероятность у определённых комбинаций увеличится, а у некоторых, наоборот – уменьшится). Классическому процессору такая задача не под силу, так как он не может менять состояние сразу у двух битов, только у одного.

На сегодняшний день учёные и инженеры пока ещё не добились каких-то выдающихся результатов в области моделирования сложных физических систем. Но если представить, что такой квантовый компьютер будет когда-либо создан, по своей производительности он обгонит самые мощные современные электронно-вычислительные машины.

Квантовая криптография

Первый успешно функционирующий алгоритм для квантового компьютера был разработан в 1994 году учёным из США Питером Шором. В основу алгоритма была заложена способность раскладывать числа на простые множители. В 2001 году корпорация IBM представила миру программу, способную осуществлять вычисления, подобные этому: 12 = 3 х 4.

Подобные разработки делают имеющуюся сегодня систему защиты и обеспечения безопасности информационных данных абсолютно бесполезной. Самый распространённый и часто используемый сегодня для защиты данных криптографический алгоритм (RSA-алгоритм) основан на том, что простой компьютер не способен за короткое время разложить число на простые множители.

Не так сложно умножить 3 на 4, а если речь идёт об умножении одного числа с тысячей знаков на другое число с несколькими тысячами знаков? Разложить результат такого умножения, которое передаётся в виде ключа к зашифрованным данным, на простые множители обычный компьютер не способен, а квантовый с подобной задачей справится без труда за считанные секунды.

Задача поиска

Зато в поисковых задачах современные образцы квантовых компьютеров добились огромных успехов. Ровно 10 лет назад 128-кубитовый квантовый компьютер, разработанный компанией D-Wave, решил поставленную перед ним задачу – отыскал трёхмерную структуру белка по сотой известной последовательности его аминокислот. Незадолго до этого всё той же корпорации D-Wave удалось посотрудничать даже с NASA.

Эксперимент заключался в необходимости определения маршрута для марсохода из одной точки в другую. Результаты этого эксперимента доподлинно не известны, однако проект по созданию лаборатории искусственного квантового интеллекта начал реализовываться такими гигантами, как Google, NASA и D-Wave сразу после его завершения.

В задачах поиска квантовому компьютеру нет равных. Найти нужный адрес или выявить закономерность в статистических данных – задача для него всего на пару секунд. Сет Ллойд, квантовый механик, профессор Массачусетского технологического университета, разработал алгоритм для 70-кубитного квантового компьютера, который может находить запрашиваемые последовательности в накопленной базе расшифрованных генов человечества.

Такой базы на сегодняшний день пока ещё не существует, однако данный алгоритм позволяет уже сегодня заменить такие известные поисковые системы, как Google и Yandex.

Некоторые источники информации сообщали, что Сет Ллойд рассказал об идее квантового поиска руководству Google, однако оно не приняло её всерьёз. Помимо высокой точности и эффективности разработанный Ллойдом алгоритм обладал ещё одним неоспоримым достоинством – он был полностью невидимым, то есть он не позволял наблюдать за своей работой.

Путь к реализации

Для создания работоспособных квантовых вычислительных устройств необходимо пройти ряд этапов реализации. Мы должны построить рабочие кубиты – не только пять, но тысячи. Мы должны организовать структуру из  квантовых вентилей и эквивалент проводов – если только мы не сможем заставить вентили действовать непосредственно на состояние во входном квантовом регистре. Все это сложные задачи, и график их решения непредсказуем.

К сожалению, проблемы связаны не столько с новизной проблем, сколько с законами квантовой механики и классической физики. Возможно, самая главная и наименее знакомая из них, называется декогеренцией. Роль кубит состоит в том, чтобы удерживать физический объект – например, ион, пакет фотонов или электрон — на месте, чтобы мы могли воздействовать на него и в конечном итоге измерять квантованную величину, такую как заряд или спин. Чтобы эта величина вела себя квантовым, а не классическим образом, мы должны иметь возможность ограничить ее состояние суперпозицией двух чистых базовых состояний, которые мы называли 0 и 1.

Но природа квантовых систем такова, что связывает их с вещами вокруг них, значительно увеличивая количество возможных базовых состояний. Физики называют такое размытие чистых состояний декогеренцией. Аналогией может быть когерентный лазерный луч в световоде, рассеивающийся на неоднородностях материала и размывающейся от суперпозиции двух мод в полностью некогерентный свет. Задачей создания физического кубита является как можно дольше предотвращать декогеренцию.

На деле это означает, что даже один кубит это сложный лабораторный инструмент, возможно, с использованием лазеров или высокочастотных радиопередатчиков, точно контролируемые электрические и магнитные поля, точные размеры, специальные материалы и, возможно, криогенное охлаждение. Его использование, по сути, является сложной экспериментальной процедурой. Даже при всех этих усилиях, сегодня это «как можно дольше» измеряется десятками микросекунд. Таким образом, у вас очень мало времени для выполнения квантовых вычислений, до того, как ваши кубиты потеряют свою согласованность. То есть, до того как информация исчезнет.

Сегодня эти ограничения исключают возможность больших квантовых регистров или проведения вычислений, для которых требуется более нескольких микросекунд. Тем не менее, в настоящее время в микроэлектронике ведутся исследования по созданию гораздо более обширных массивов кубитов и квантовых вентилей.

Однако сама эта работа несколько бессвязна, потому что пока нет определенности в отношении того, какое физическое явление использовать для хранения квантовых состояний. Существуют конструкции кубит, которые квантуют поляризацию фотонов, заряд электронов, захваченных квантовыми точками, чистый спин сверхохлажденных ионов в ловушке, заряд в устройстве, называемом трансмоном, и некоторые другие подходы.

Тип кубита, который вы выберете, естественно определит реализацию квантовых вентилей. Например, вы можете использовать взаимодействие радиоимпульсов с внутренними спинами в молекулах в ловушке или взаимодействие расщепителей пучков с фотонными модами в волноводах. Очевидно, что существо дела находится  глубоко в области экспериментальной физики. И, как уже упоминалось, реализация кубитов или квантовых вентилей требует использования большого количества различного оборудования, от цифровой логики до лазеров или радиопередатчиков, антенн и до криогенных охладителей.

Реализация кубит также зависит, от того каким образом измеряется состояние кубит. Вам может потребоваться сверхчувствительный фотометр или болометр, мост сопротивлений или какое-либо другое невероятно чувствительное устройство для измерения кубитов и перевода состояния суперпозиции в базовое состояние. И, кроме того, этот процесс измерения состояния кубит вызывает еще одну проблему, незнакомую традиционным вычислениям: получение неправильного ответа.

Гонка за первый квантовый компьютер

Квантовый компьютер — вычислительная система, использующая квантовую механику (явления квантовой суперпозиции и квантовой запутанности) для передачи и обработки информации. Для хранения и обработки информации обычные компьютеры используют двоичные единицы, называемые битами, которые могут представлять одно из двух возможных состояний: 0 или 1. Квантовые компьютеры используют квантовые биты (кубиты), которые могут быть 0 и 1 одновременно. Это явление называется суперпозицией. Благодаря этому квантовый компьютер может обрабатывать информацию в тысячи и миллионы раз быстрее, чем обычные компьютеры.

Состояние суперпозиции, которое необходимо для выполнения вычислений, трудно достичь и еще сложнее поддерживать. Физики для этого используют лазерные и микроволновые лучи, чтобы поместить кубиты в рабочее состояние, а затем задействуют множество методов, чтобы уберечь их от малейших колебаний температуры, шумов и электромагнитных волн. Главная техническая сложность в декогеренции — при соприкосновении с внешней средой квантовые системы становятся классическими и допускают ошибки.

Полноценных суперкомпьютеров еще нет — пока разработаны лишь экспериментальные системы, работающие по заданным алгоритмам. Современные технологии не позволяют создать квантовый компьютер, который мог бы решать универсальные задачи.

Квантовая вычислительная мощность определяется тем, сколько кубитов компьютер может использовать одновременно. Первые эксперименты в конце 90-х проводили на скромных 2-кубитовых процессорах. C тех пор технология медленно, но постоянно совершенствовалась, наращивая количество кубитов. Специалисты из компании D-Wave создали 2000-кубитный квантовый компьютер; Google может похвастаться 72-кубитным процессором Bristlecone, а у IBM есть 50-кубитная модель. В гонке за создание квантового компьютера участвуют также Microsoft, Intel и другие крупные технологические компании и стартапы.

Квантовые компьютеры позволили бы сделать возможными химическое и физическое моделирование, симуляцию различных процессов, прогнозирование вероятностей, обработку колоссальных массивов астрономических и любых других данных.

Капитализация рынка квантовых технологий

Александр Львовский отметил, что в создание квантового компьютера сейчас активно вкладывают четыре компании. — $100 млн, Intel — $50 млн, IBM — $100 млн, AlibabaGroup — $150 млн. Первая тройка реализовала «квантовые компьютеры» (Google — 49 кубит, IBM — 16 кубит, Intel (Intel Core Quantum) — 50 кубит). Однако специалист считает, что никого из них нельзя считать победителем квантовой гонки.

Данными общего рынка капитализации квантовых технологий также поделился физик-теоретик, сотрудник Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики (ИТМО) Антон Козубов:

• $845 млн — объём рынка квантовых коммуникаций в 2015 году (по данным Global Industry Analysts).
• $26 млрд — рынок квантовых вычислений в 2015-2020 годах (прогноз Market Research Media).

Коммерциализация квантовых технологий в России

Она берет свое начало с 2017 года. Тогда РКЦ при поддержке Газпромбанка, ВЭБ, Сбербанка разработал квантовый блокчейн. В нем цифровые подписи заменили протоколами попарной аутентификации на основе квантовой криптографии. А конструкция «блоков» децентрализована по всей сети.

В то же время, некоторые эксперты приводят в пример разработки компании СКОНТЕЛ еще в 2004 году. Например, двухканальную систему регистрации оптических фотонов и приёмную систему терагерцевого излучения.

Завкафедрой квантовой оптики и телекоммуникаций МИЭМ НИУ ВШЭ, профессор Григорий Гольцман считает, что работы над квантовыми технологиями в России начались еще 17 лет назад.

Тогда ученые создали сверхпроводящий однофотонный детектор SSPD. Новое развитие технологии, по словам Гольцмана, началось с установки SSPD на оптический волновод. И получения квантовых оптических интегральных микросхем. Применение оптического волновода увеличило эффективность регистрации фотонов до 91% от общего количества.

Квантовые коммуникации

Квантовая коммуникация, это технологии, направленные на устранение угрозы информационной безопасности, в том числе со стороны квантовых компьютеров. Они включают в себе использование свойств квантовых систем для передачи ключей, и, естественно, главное преимущество — это защищенность информации, гарантированная законами физики.

Уровень готовности в мире составляет TRL–9 как в решениях точка–точка, так и в сетях с доверенным узлом. Оборудование КРК для сетей с недоверенными узлами находится на уровне лабораторного тестирования. Сегодня уровень готовности отечественных решений точка–точка можно оценить, как TRL–8. В то время, как в части квантовых сетей на основе доверенных узлов отечественные разработки квантовых сетей сильно отстают от уровня Китая и ЕС: TRL–6 против TRL–9.

Исторически динамика движения российских команд очень позитивная. В результате позднего старта только в 2016м году были представлены полевые испытания прототипов, что соответствует отставанию в 12–14 лет. За 3 года отставание по решениям точка–точка сократилось до 3–х лет. За следующие 3–4 года необходимо за время действия программы ликвидировать отставание полностью. В данной области в России имеются существенные научно–технические и технологические заделы. Функционирует несколько команд, которые демонстрируют прототипы новых решений и проводят испытания в реальных условиях. За период функционирования программы, предлагаемой в настоящей ДК, предполагается создать ряд рыночных решений для систем КРК, сертифицированных регулятором.

Актуализация угрозы квантового компьютера увеличит скорость развития рынка квантовых коммуникаций как в России, так и за рубежом. Поддержка строительства квантовых сетей сформирует сильных игроков рынка, которые создадут как магистральные сети, так и разветвленные городские.

Новые решения должны позволить перейти от решений «точка–точка» к архитектуре «звезда» со снижением стоимости подключения и к решениям без требования к доверию промежуточному узлу. Ускоренное развитие отечественных игроков позволит захватить 8% мирового рынка, что, в свою очередь, должно обеспечить развитие отрасли за горизонтом программы ЦЭ.

Ключевыми характеристиками технологий квантовой коммуникацией является предельная дальность распределения секретных ключей, скорость распределения секретных ключей, степень секретности ключей, цена, требование к инфраструктуре. Но это не полноценный список характеристик, так как по итогам обсуждениям с Регулятором этот список может дополнится.

Лидирующие организации

  • ЗАО «Сверхпроводниковые нанотехнологии» (Сконтел);
  • ИФП А.В. Ржанова СО РАН;
  • МПГУ; ПАО «Ростелеком»;
  • РКЦ (совместно с компаниями КуРэйт, С–Терра, КриптоПро, Амикон, Код Безопасности, МИАН им. В.А. Стеклова);
  • Университет ИТМО (совместно с компаниями Квантовые коммуникации, Смартс, Кванттелеком и Квантовым Центром КНИТУ–КАИ);
  • ЦКТ МГУ им. М.В. Ломоносова (совместно с компаниями ИнфоТеКС и Криптософт).

Распределение мер поддержки среди институтов развития

Для поддержки малых и средних проектов Фонд содействия инновациям выделит грантов на сумму 550 млн руб. «Российская венчурная компания» (РВК) выделит целевых субсидий на возмещение затрат в размере 6,2 млрд руб., еще 1,45 млрд руб. целевых субсидий на возмещение затрат на внедрение направит Российский фонд развития информационных технологий (РФРИТ).

Для поддержки комплексных и инфраструктурных проектов РВК выделит целевые субсидии на возмещение затрат в размере 1,8 млрд руб., фонд «Сколково» — еще 1,6 млрд руб. В части экосистемных проектов РВК, фонд «Сколково» и «Платформа НТИ» совместно потратят 1,4 млрд руб.

Теоретические основы криптографии

В начале XX века в работах Клода Шеннона и Владимира Котельникова были сформулированы требования к абсолютно защищенной криптографической системе, позже получившей название «Одноразовый блокнот» (известный также как «шифр Вернама»). Она остается стойкой даже при наличии у злоумышленника неограниченных вычислительных ресурсов.

При этом необходимо выполнить несколько условий: ключ должен быть известен только легитимным сторонам коммуникаций; длина ключа в битах должна быть не меньше длины сообщения; ключ должен быть случайным и использоваться только один раз.

Исходя из анализа этих требований, можно сделать вывод о том, что центральной и наиболее важной задачей криптографии является задача распределения криптографических ключей. Одна из проблем криптографии состоит в том, что чем больше информации передается с помощью одного ключа, тем большей становится так называемая «нагрузка на ключ», и тем больше данных накапливается для криптоанализа

Одним из возможных решений задачи распределения ключей является криптография с открытым ключом, заложенная в работах Мартина Хелмана, Уитфилда Диффи и Ральфа Меркла. Она заключается в использовании для распределения ключей односторонних математических функций. Их основным свойством является, с одной стороны, легкость вычисления функции по известному аргументу, а с другой стороны — сложность вычисления аргумента по известному значению заданной функции.

Примером такой «односторонней» задачи является факторизация: перемножить два простых больших числа легко, тогда как сказать, из каких простых множителей состоит заданное число, вычислительно сложно. Именно на предположении о сложности решения некоторых классов математических задач основывается современная криптографическая защиты информации.

Примером является распространенный криптографической алгоритм RSA. Криптография с открытым ключом требует наличия двух ключей: открытого ключа и секретного ключа, которые образуют пару. Получатель послания генерирует два ключа, делает открытый ключ общедоступным, а секретный ключ сохраняет в секрете.

Методы криптографии с открытым ключом могут быть использованы для обеспечения ключами симметричных криптографических алгоритмов. В симметричных криптографических алгоритмах один и тот же ключ используется как для шифрования, так и для расшифровки сообщения. Секретность передачи зашифрованных данных ограничивается, в том числе, секретностью способа распределения ключей.

Именно для того, чтобы избежать необходимости курьерской передачи ключей, используются криптографические методы с открытым ключом. Тем не менее, секретность таких систем, как упоминалось выше, основывается на вычислительной сложности некоторых классов математических задач. Сегодня такой технологический стек, совмещающий криптографию с открытым ключом с симметричной криптографией, достаточно широко распространен. С его помощью защищается подавляющее большинство данных, передаваемых в интернете.

Отличной иллюстрацией решений на основе вычислительной сложности является DES (Digital Encryption system) и основанные на ней различные системы. DES была разработана IBM в 1975 г. Эта система использует очень простые арифметические операции, что позволяет выполнять кодирование электронными устройствами и достигать очень высокой скорости работы.

Так же, как и в случае с открытым ключом, DES подвергалась различным атакам по мере развития вычислительных мощностей. Алгоритм использует ключ длиной 56 бит, которые многократно используется для кодирования всего сообщения. Как следствие, его секретность связана только с вычислительной сложностью.

В 1997 г. эта система впервые была взломана, на это ушло 96 дней. Для этого использовался прямой перебор всех возможных ключей на большом количестве компьютеров (2 в степени 56). Уже в 1998 г. сообщение было дешифровано за 41 день при помощи 50 тыс. компьютеров, соединенных через интернет. В 1999 г. две предыдущие группы объединили свои усилия и вскрыли сообщение за 22 часа 15 минут.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Центр Начало
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: